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The task scheduling problem



Current hardware trends in HPC

HPC systems have long been highly parallel and modern
machines are increasingly likely to also be heterogeneous.

4,356 nodes, each with:

» Two 22-core Power9 CPUs

» Six NVIDIA Tesla V100 GPUs
Altogether, there are 2,282,544 cores!




Exploiting these changes

Different types of processors have different attributes—and
ultimately different kinds of tasks that they are good at.
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Roughly: CPUs are better at small serial tasks and GPUs at large parallel ones.

How do we make the most effective use of the diverse com-
puting resources of modern HPC systems?




Task-based programming

A popular parallel programming paradigm in recent years is based
on the concept of a task—essentially, a discrete unit of work.

The main idea: specify jobs as collections of tasks and the
dependencies (i.e., dataflow) between them.

» Very portable—just need to think at task level.
» Relatively easy to code.

» Well-suited to numerical linear algebra.

Runtime systems based on this model include StarPU and
PaRSEC.



Task-based NLA

In numerical linear algebra, perhaps the most natural way to
define tasks is as BLAS calls on individual tiles of the matrix.

Tiled Cholesky factorization
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Source: [4, Tomov et al., 2012].




From tasks to DAGs

We can view applications as Directed Acyclic Graphs (DAGs),
with nodes representing the tasks and edges the dependencies
between them.
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The task scheduling problem

Given a HPC system and an application/DAG, what is the
optimal way to assign the tasks to the processors? In other
words, how do we find an optimal schedule?

This is really just a classic optimization problem—job shop
scheduling.

Unfortunately, this is known to be NP-complete.
—> heuristics and approximate solutions.



What is currently done?

Listing heuristics are currently the most popular approach:

Rank all tasks according to some attribute.
Schedule all tasks according to their rank.

Many use the critical path, the longest path through the
DAG—and a lower bound on the total execution time of the

whole DAG in parallel.
There are two fundamental types of scheduling algorithms:

» Static: schedule is fixed before execution.

» Dynamic: schedule may change during execution.



HEFT

Heterogeneous Earliest Finish Time

Define the upward rank of a task to be the length of the
critical path starting from that task (inclusive).

Set all weights in the DAG by averaging over all
processors.

Calculate the upward rank of each task in the DAG.
List all tasks in descending order of upward rank.

Schedule each task in list on the processor estimated
to complete it at the earliest time.

Basic idea: use mean values to set the DAG and solve
with dynamic programming.

Usually pretty good, and lots of variants (e.g., dynamic)
exist—but still room for improvement.

10



Reinforcement learning
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Reinforcement learning

One approach we are investigating is the application of
reinforcement learning (RL) to the problem.

RL is a kind of machine learning that takes inspiration from
trial-and-error, "behaviorist" theories of animal learning. The

basic set up is:

state reward action
S; R, A,

.. | Environment

We have an agent that interacts with an environment by
taking actions for which it receives some reward that it
seeks to maximize, which is the only feedback it receives.

w|=
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The RL framework

We have a value function that tells the agent how "good" it is
in the long run to take an action when the environment is in a
particular state,

V(s)=r, Q(s,a) =r.

This lets us weigh immediate rewards against potential
long-term losses.

A policy 7 defines the agent’s behavior given the current state
of the system, 7(s) = a.

» Can be deterministic or stochastic.

The goal is to find the optimal policy 7*, which maximizes the
total reward received.
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Dynamic programming

More formally, RL attempts to solve a Markov decision
process (MDP) by using value functions to guide decisions.

Thus RL is in some sense equivalent to dynamic programming
(DP)—but the dynamics of the MDP are unknown and must be
learned from experience.

DP methods find optimal value functions—and thus policies—by
solving the Bellman equation

or

Q*(s,a) = ]E[R(s, a) + 7 max Q(s, a’)}.
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Generalized policy iteration

Many RL algorithms can be expressed in a simple framework
called generalized policy iteration.
Start with a policy. Repeat until convergence:

Evaluate it.

Improve it.

We have a lot of scope:
» On-policy or off-policy.
m Improve current policy or use another for exploration?
» Monte Carlo methods.
m Average over episodes of experience.
m Update after every episode.
» Temporal-difference methods.

m Update after every time step.
15



Sarsa and Q-learning
foreach episode do

foreach step of episode do
For current state s, take action a according to
some e-greedy policy wrt Q.

Observe immediate reward r and next state s’.
Choose next action &’ according to policy.
Q(s,2) = Q(s,a)+a|r+7Q(s’, a) - Q(s, a).

s=5¢.

\

Q-learning very similar but we instead update using:

Q(s,a) = Q(s,a) + a[r +ymaxy Q(s,a") — Q(s, a)}.
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Approximate dynamic programming

Very large state spaces are problematic—this is the curse of
dimensionality.

Need to generalize and approximate the value (or Q) function,
so we can estimate its value for unseen states and actions,

V(s)~ V(s,0),

where 6 is some (finite) vector of parameters.

This is approximate dynamic programming.
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Deep reinforcement learning

The most popular approach is to use deep neural networks.
This is called deep reinforcement learning.

Reward

Agent

State Take Environment

action

parameter 6

Observe state
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Why reinforcement learning?

Applying RL follows naturally from the idea of planning along
the critical path of the DAG. But is it practical?

Recent successes suggest traditional issues can be overcome.

b DeepMind

Atari games.

» Transfer of learning.
» See [1, Mnih et al., 2015].

Board game Go.
» =~ 1072 possible states.

» See [2, Silver et al., 2016]
| — and [3, Silver et al., 2017].
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Some questions
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Long-term goal

What we ultimately want:

A scheduler that can find a near-optimal schedule for any
given application on any given HPC architecture in a rea-
sonable time.

If using RL in particular we need to be practical by:

» Minimizing the cost of gathering training data,
» Making the best possible use of the data we have.
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Generic RL issues

» Exploration vs. exploitation.

How do we avoid getting stuck in local optima?

m Standard e-greedy policies.
m UCB, Thompson sampling?

» The credit assignment problem.

How do we identify the features that are truly useful for
making decisions?

» Crafting the problem.

How do we define states, actions and rewards?
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RL needs lots of data but in HPC hours of runtime can be
hundreds of dollars in energy costs—everything must be fast!

Solution: why not just simulate?

» Much cheaper/faster/easier. Q(SlMﬁR|D
» Can consider arbitrary architectures. -/
““\=’)

» Mature software available—reliable
results.

Key is to identify what data we really require.
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Transfer of learning

How do we generalize from the data we have?

» Can we exploit DAG structure to cluster them?

» What about parameterized task graphs (PTGs)?

m Never see the entire DAG.
m Used in StarPU, PaRSEC, . ...

» Similar issues for new environments.

Rather than learning how to schedule a given DAG on a given
system, need to learn rules that can be applied to many different
DAGs on many different systems.
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Can we improve HEFT?

There are some obvious issues with HEFT.
» Using average values across all processors is simple but not
necessarily optimal.
» Greedy—can't avoid large future costs.

- A simple example

Environment: Node with two Kepler K20 GPUs, one 12-
core Sandy Bridge CPU.

° o Optimal policy is to schedule everything
on one of the GPUs.

But HEFT schedules Tasks A and B on
° different GPUs, so can't avoid large later

communication cost.
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Thank you for your attention.

Any questions?
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