

What Is the Gerstenhaber Problem?

Nick Higham Department of Mathematics The University of Manchester

http://www.maths.manchester.ac.uk/~higham

NLA Group Talk July 8, 2020

Matrix Space

- Vector space ℝ^{n×n} of real matrices has dimension n², with a basis E_{ij} = e_ie^T_j.
- Cayley–Hamilton theorem says that p(A) = 0 where p(t) = det(λI − A) is the characteristic polynomial of A.
- Aⁿ can be expressed as a linear combination of *I*, *A*, ..., Aⁿ⁻¹, so the powers of *A* span a vector space of dimension at most *n*.

Gerstenhaber's 1961 Result

Theorem

If A and B are two commuting $n \times n$ matrices then the matrices $A^i B^j$, $0 \le i, j \le n$, generate a vector space of dimension at most n.

For three commuting $n \times n$ matrices *A*, *B*, and *C* can the vector space

$$S_n = \{ A^i B^j C^k : 0 \le i, j, k \le n-1 \}$$

have dimension greater than *n*?

Take 4×4 matrices

$$A = e_1 e_3^T$$
, $B = e_1 e_4^T$, $C = e_2 e_3^T$, $D = e_2 e_4^T$

all possible products are zero, so the matrices commute pairwise. Yet $I = A^0, A, B, C, D$ are clearly five linearly independent matrices.

Take 4×4 matrices

$$A = e_1 e_3^T$$
, $B = e_1 e_4^T$, $C = e_2 e_3^T$, $D = e_2 e_4^T$

all possible products are zero, so the matrices commute pairwise. Yet $I = A^0, A, B, C, D$ are clearly five linearly independent matrices.

Is Gerstenhaber like the FLT: "true for one and two, fails for three or more"?

Some Known Facts

- The result holds for all $n \leq 11$.
- Failure for one value of *n* implies failure for all larger *n*.
- By a 1905 result of Schur, the dimension of S_n is at most $1 + \lfloor n^2/4 \rfloor$.

Holbrook & O'Meara (2020) state that they

"firmly believe the GP will turn out to have a negative answer".

Computational Search for Counterexample

For some $n \ge 12$, choose three commuting $n \times n$ matrices *A*, *B*, and *C*, select $m \ge n$ monomials

$$X_i = A^{i_p} B^{j_p} C^{k_p}, \quad 1 \leq p \leq m,$$

form the matrix

$$Y = [\operatorname{vec}(X_1), \operatorname{vec}(X_2), \dots, \operatorname{vec}(X_m)],$$

then compute rank(Y), which is a lower bound on dim(S_n), and check whether it exceeds n.

Challenges

- How do we choose A, B, and C?
- How do we choose the powers?
- How do we avoid overflow and underflow and compute a reliable rank, given that we might be dealing with large powers of large matrices?

Challenges

- How do we choose *A*, *B*, and *C*?
- How do we choose the powers?
- How do we avoid overflow and underflow and compute a reliable rank, given that we might be dealing with large powers of large matrices?

Holbrook and O'Meara mostly tried $m \le 50$ but feel that

"the Loch Ness monster probably lives in deeper water, closer to 100 \times 100."

Searching for a Eureka

Holbrook and O'Meara (2020), call a case with $dim(S_n) > n$ a

Eureka.

They note that:

- *A*, *B*, and *C* can be assumed to be nilpotent (hence defective).
- Since commuting matrices are simultaneously unitarily triangularizable, A, B, and C can be assumed to be strictly upper triangular.
- A can be assumed to be in Weyr canonical form.

Weyr Canonical Form

- A dual of the Jordan canonical form.
- Jordan matrix replaced by a Weyr matrix, which is a direct sum of basic Weyr matrices.

$$W(\lambda) = \begin{bmatrix} \lambda & 0 & 1 & 0 \\ 0 & \lambda & 0 & 1 \\ \hline & & \lambda & 0 & 1 \\ \hline & & & \lambda & 0 \\ \hline & & & & 0 & \lambda \end{bmatrix}, \quad J(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \\ \hline & & & & \lambda & 1 \\ \hline & & & & \lambda & 1 \\ \hline & & & & 0 & \lambda \end{bmatrix}$$

 $J(\lambda) = P^T W(\lambda) P$ for some permutation matrix *P*. Form *W* from *J* via a dot diagram (Young diagram):

Why Weyr?

- Any matrix that commutes with a Jordan matrix is a Toeplitz matrix.
- Any matrix that commutes with a Weyr matrix is block upper triangular.
- From A in Weyr, commuting matrices B and C can be built up in a systematic way.

Codes

- Suffices to compute modulo a prime p (O'Meara, 2020) so the computations can be done in exact arithmetic.
- Holbrook & O'Meara (2020) have MATLAB codes available on request.
- 41 codes, nicely commented but not optimized.
- Most of time is spent in computing GCDs:

```
while a ~= 0
for i = 40:-1:0
    while ((10)^i)*b < a
        a = a - ((10)^i)*b; % subtract bigges
    end
end</pre>
```


References I

R. M. Corless and S. E. Thornton. The Weyr canonical form.

https://s3.amazonaws.com/stevenethornton. github/WeyrForm.pdf, 2016.

J. Holbrook and K. C. O'Meara.

A computing strategy and programs to resolve the Gerstenhaber problem for commuting triples of matrices.

ArXiv:2006.08588,, June 2020.

K. C. O'Meara.

The Gerstenhaber problem for commuting triples of matrices is "decidable".

Comm. Algebra, 48(2):453-466, 2020.

