Random Orthogonal Matrices in High Performance Computing

Nick Higham
Department of Mathematics
The University of Manchester

http://www.maths.manchester.ac.uk/~higham

KAUST Extreme Computing Research Center
July 19, 2020
What Is a Random Orthogonal Matrix?

Distributed according to the Haar measure over the group of orthogonal matrices.

- Haar measure provides a uniform distribution over the orthogonal matrices.
- Haar measure is invariant under mult on left and right by orthogonal matrices: if Q is distributed so is UQV for any orthogonal (possibly non-random) U and V.

Nick Higham
Random Orthogonal Matrices
2 / 22
What Is a Random Orthogonal Matrix?

Distributed according to the Haar measure over the group of orthogonal matrices.

- Haar measure provides a uniform distribution over the orthogonal matrices.
- Haar measure is invariant under mult on left and right by orthogonal matrices: if Q is distributed so is UQV for any orthogonal (possibly non-random) U and V.

These are not Haar distributed, where $S = -S^T$:

- random Householder matrix,
- random Cayley transform $(I + S)(I - S)^{-1}$,
- e^S.
\[A = P\Sigma Q^T \in \mathbb{R}^{m \times n}, \quad P, Q \text{ random orthogonal} \]
\[\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n), \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0. \]

- **Demmel & McKenney (1989)**: LAPACK’s test matrix generation suite.
Generating Q

Method 1 (inefficient).

\[
[Q,R] = \text{qr}(\text{randn}(n));
Q = Q \cdot \text{diag}(\text{sign}(\text{diag}(R)));
\]

Method 2 (efficient, product form, no R).

Stewart (1980): Let $x_k \in \mathbb{R}^{n-k+1}$ be normal $(0,1)$. H_k Householder matrix that reduces x_k to $r_{kk}e_1$.

\[
Q = DH_1'H_2' \ldots H'_{n-1},
\]

where $H_k' = \text{diag}(l_{k-1}, H_k)$, $D = \text{diag}(\text{sign}(r_{kk}))$, $r_{nn} = x_n$.

- In MATLAB, $Q = \text{gallery('qmult', n)}$.
- Halves cost of forming a randsvd matrix:
 \[
 \approx m^3 + n^3 \text{ flops.}
 \]
Want to compute A in $O(mn)$ flops.
Want to compute A in $O(mn)$ flops.

- In $A = P \Sigma Q^T$, give up P and Q Haar-distributed, or even random.
- Could use same construction with $k \leq \min(m, n)$ Householders.
Let

\[A = Q \Sigma W^T, \]

where \(Q \) has orthonormal cols and \(W \) is a random (rectangular) Householder matrix.

For \(m = n \), if only \(\kappa_2(A) \) is to be specified, can reduce the cost of formation by setting \(\sigma_2 = \cdots = \sigma_{n-1} = 1 \).

Properties

- Form in \(O(mn) \) flops + cost of \(Q \).
- Little communication required.

Choice of Q

- Haar distributed \textit{or}
- to reduce communication, $Q = (f(i, j))$, such as

\[q_{ij} = \frac{2}{\sqrt{2n + 1}} \sin \left(\frac{2ij\pi}{2n + 1} \right). \]
Experiment, $n = 20,000$

- In C using BLACS, PBLAS, ScaLAPACK, Open MPI.
- Nodes have two 16-core Intel Xeon CPUs.
- p processes. Wall clock (left), speedup t_1/t_p (right).
Gaussian elimination on $A \in \mathbb{R}^{n \times n}$ produces $A = LU$.

With $A^{(1)} = A$, $A^{(n)} = U$, $A^{(k)} = (a_{ij}^{(k)})$ matrix at kth stage of Gaussian elimination,

$$
\rho_n(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \geq 1.
$$
Gaussian elimination on $A \in \mathbb{R}^{n \times n}$ produces $A = LU$.

With $A^{(1)} = A$, $A^{(n)} = U$, $A^{(k)} = (a^{(k)}_{ij})$ matrix at kth stage of Gaussian elimination,

\[
\rho_n(A) = \frac{\max_{i,j,k} |a^{(k)}_{ij}|}{\max_{i,j} |a_{ij}|} \geq 1.
\]

Theorem (Wilkinson, 1961)

GE produces a computed solution \hat{x} to $Ax = b$ satisfying

\[
(A + \Delta A)\hat{x} = b, \quad \|\Delta A\|_\infty \leq p(n)\rho_n u \|A\|_\infty,
\]

where u is unit roundoff and p a low degree polynomial.
Without pivoting, ρ_n can arbitrarily large.

With **partial pivoting**, $\rho_n \leq 2^{n-1}$, attained for

$$A_4 = \begin{bmatrix}
1 & 0 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{bmatrix}.$$

Wright (1993) and Foster (1994) found applications where partial pivoting suffers exponential growth.

Higham & Higham (1989) found orthogonal matrices with $\rho_n \gtrsim n/2$ for any pivoting strategy.

In practice, ρ_n is **almost always small** for partial pivoting. *Open problem to explain why!*
function g = gf(A)
%GF Approximate growth factor.
% g = GF(A) is an approximation to the
% growth factor for LU factorization
% with partial pivoting.
[~,U] = lu(A);
g = max(abs(U),[],'all')/max(abs(A),[],'all');

- This is a lower bound on $\rho_n(A)$.
- Can get exact growth factor using gep.m from Matrix Computation Toolbox.
>> rng(1); gf(randn(10))
an =
 1.5088e+00
>> gf(randn(100))
an =
 4.4874e+00
>> gf(randn(1000))
an =
 1.5997e+01
>> gf(randn(10000))
an =
 5.0505e+01
>> gf(gallery('randsvd',1000,1e8,2,[],[],1))
an =
 7.5329e+01
Does $O(n)$ Growth Matter?

- $n = 10^7$ for today’s largest dense $Ax = b$
 \Rightarrow problems in single precision.

- For IEEE half precision and $\max_{i,j} |a_{ij}| = 1$, linear growth can cause overflow for $n = 7 \times 10^4$.
 (That’s how these matrices were spotted.)

Randsvd Matrices (Mode 2)

\[A = P \Sigma Q^T \in \mathbb{R}^{n \times n}, \quad P^T P = Q^T Q = I, \]
\[\Sigma = \text{diag}(1, \ldots, 1, \sigma_n), \quad 1 \geq \sigma_n \geq 0. \]
Theorem (H & H, 1989)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular,

\[
\alpha = \max_{i,j} |a_{ij}|, \quad \beta = \max_{i,j} \left| (A^{-1})_{ij} \right|, \quad \theta = (\alpha \beta)^{-1}.
\]

Then $\theta \leq n$, and for any permutation matrices Π_r and Π_c such that $\Pi_r A \Pi_c$ has an LU factorization, the growth factor for GE without pivoting on $\Pi_r A \Pi_c$ satisfies

\[
\rho_n(A) \geq \theta.
\]
Randsvd with $\sigma_n = 1$ gives $A = PQ^T$: random orthogonal matrix from Haar distribution. Jiang (2005) shows that

$$\Pr\left(\max_{i,j} |a_{ij}| > 2\sqrt{\frac{\log(n)}{n}}(1 + \epsilon) \right) \to 0$$

as $n \to \infty$ for any $\epsilon > 0$. Since $A^{-1} = A^T$, can take $\alpha = \beta = 2\sqrt{\log(n)/n}$ in the theorem and conclude

$$\rho_n(A) \gtrsim \frac{n}{4 \log n}$$

for large n with high probability for any pivoting strategy.
Growth Factors for Random Orthogonal Matrices

Maximum growth factor

- Partial Pivoting
- Rook pivoting
- Complete pivoting

n is the size of the matrices.
Proof of Large Growth for Randsvd

The randsvd matrix is

\[A = PQ^T + (\sigma_n - 1)p_nq_n^T, \]

where \(p_n \) and \(q_n \) are the last columns of \(P \) and \(Q \).

If \(W \) is orthogonal and has large growth then a rank-1 perturbation of norm at most 1 tends to preserve the large growth.

Not particular to \(W \) being Haar distributed.

One approach is via Sherman–Morrison formula.
Let W be orthogonal and

$$A = W + xy^T.$$

The U factor of W is given explicitly by

$$u_{ij} = \frac{\det(W(1: i, [1: i - 1, j]))}{\det(W_{i-1})}, \quad i \leq j,$$

where $W_j = W(1: j, 1: j)$. Find \tilde{U} factor of A satisfies

$$\frac{\tilde{u}_{ij}}{u_{ij}} = \frac{1 + y([1: i - 1, j])^T W(1: i, [1: i - 1, j])^{-1} x(1: i)}{1 + y(1: i - 1)^T W_{i-1}^{-1} x(1: i - 1)}.$$
Lemma

Let $W \in \mathbb{R}^{n\times n}$ be orthogonal and

$$
\begin{bmatrix}
\begin{array}{cc}
W_{11} & W_{12} \\
W_{12} & W_{22}
\end{array}
\end{bmatrix},
$$

where $k < n/2$. Then W_{11} has at least $n - 2k$ singular values equal to 1 and the remaining k singular values are bounded above by 1.
Lemma

Let $W \in \mathbb{R}^{n \times n}$ be orthogonal and

\[
\begin{bmatrix}
 W_{11} & W_{12} \\
 W_{12} & W_{22}
\end{bmatrix},
\]

where $k < n/2$. Then W_{11} has at least $n - 2k$ singular values equal to 1 and the remaining k singular values are bounded above by 1.

Proof. Use the CS decomposition.
Iterative Refinement

For $Ax = b$, with precisions low, medium, high.

- Factorize $A = LU$ in low.
- Solve $Ax = b$ in low.
- Repeat
 - $r = b - Ax$ in high.
 - Solve $Ad = r$ in medium using LU factors.
 - or
 - Solve $U^{-1}L^{-1}Ad = U^{-1}L^{-1}r$ by GMRES in medium.
 - $x \leftarrow x + d$ in medium.

Large growth does not inhibit convergence of IR.
New class of random, dense $A \in \mathbb{R}^{n \times n}$ (randsvd mode 2) for which

- $\rho_n \gtrsim n/(4 \log n)$ for large n with any form of pivoting,
- $\kappa_2(A)$ can be arbitrarily chosen.

Have been part of MATLAB gallery for many years but their growth properties had not been recognized.

- New algorithm forms “randsvd-like” matrices at cost linear in # matrix elements, with little communication.
- Beware mode 2!

J. W. Demmel and A. McKenney.
A test matrix generation suite.
16 pp.
LAPACK Working Note 9.
M. Fasi and N. J. Higham.
Generating extreme-scale matrices with specified singular values or condition numbers.
21 pp.

L. V. Foster.
Gaussian elimination with partial pivoting can fail in practice.

N. J. Higham.
The Test Matrix Toolbox for MATLAB (version 3.0).

N. J. Higham and D. J. Higham.
Large growth factors in Gaussian elimination with pivoting.

T. Jiang.
Maxima of entries of Haar distributed matrices.
S. J. Wright.
A collection of problems for which Gaussian elimination with partial pivoting is unstable.

W. Zhang and N. J. Higham.
Matrix Depot: An extensible test matrix collection for Julia.