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Introduction
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We consider the problem of computing the trace of an implicitly-defined n by n matrix A = f(G).

This problem is important in many applications, where the function f can be matrix exponential,
matrix log, fractional powers or entropy.

Computational difficulties arise when the order n is large and/or all the information of G is not
available in the computer’s main memory.

We consider approaches to estimate the trace of a large matrix A using a restricted amount of
information from A.



Inaccurate or approximate computing

= Due to resource (time, power, size, etc.) limitation, it might not be possible to compute the full
trace of A.
= In this case, we are limited to a restricted access to information about 4 in order to estimate

trace(A).
= \We consider two such restrictions which can be considered in the same framework.

1. Asynchronous randomized trace estimates
2. Trace estimation via stochastic rounding
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Matrix trace estimation and graph analytics
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Matrix trace estimation Is ubiquitous in graph analytics.

In chemical graph theory, the Estrada index is a topological index of protein folding. The
index was first defined by Ernesto Estrada as a measure of the degree of folding of a
protein, which Is represented as a path-graph weighted by the dihedral or torsional angles
of the protein backbone. This index of degree of folding has found multiple applications in
the study of protein functions and protein-ligand interactions. The Estrada index is equal

to
trace(e”).

Computing the transitivity ratio of a (sub-)graph leads to e-commerce opportunities, e.g.,
high ratio implies similarity between nodes, thus creating marketing opportunities in of
e-commerce platforms (for example, suggest to user ¢ what you suggested to users j and k
if they form a triangle). The number of triangles can be determined by computing

trace(A”)/6.



Generalized Adversarial Networks

The Fréchet inception distance (FID) is a metric used to assess the quality of images
created by a generative model, like a generative adversarial network (GAN).

Unlike the earlier inception score (IS), which evaluates only the distribution of generated
images, the FID compares the distribution of generated images with the distribution of a
set of real images (" ground truth”).

For multivariate variables this Is equivalent to computing

F1D = HMX — /LyH -+ trace(EX + 2y — 2\/2){21/)

We need to compute the trace of covariance matrices.
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Hutchinson’s trace estimator

e [he standard approach to compute the trace of an implicitly-defined matrix A is to apply
Monte Carlo trace estimation.

@ Let £ be a random vector with zero mean and unit variance. We have

n

TA$ Z Z Azj [IZIJ] — Z A”E[QEZQEZ] -+ Z AZJE[IZIJ] — iAM — trace(A).
) £ 1 1=1

1=1 3=1 1=1

e Thus, the following trace estimator, known as Hutchinson's trace estimator, is an unbiased
estimator of trace(A):

m

1
Hutchinson's trace estimator : — E T, - Az,
m
k=1

where z}. is an n-length Rademacher vector (i.e., each entry is equal to +1 with equal
probability).
e The convergence of Hutchinson's trace estimator is governed by O(1/y/m).
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Asynchronous randomized trace estimates

= Asynchronous computations arise naturally in distributed-memory
Implementations for the iterative computation of fixed points so as to reduce
idle time between different processing elements via reducing synchronization
points.

= While asynchronous iterations generally lead to slower convergence, the ever-
Increasing gap between the time required to share a floating-point number
between different processing elements and the time needed to perform a single
floating-point operation by one of the processing elements, has led to a revived
Interest in the analysis and application of asynchronous algorithms in numerical
linear algebra.
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Probabilistic framework

e Let 7 denote a random subset of T' € N integers (without replacement) from the set
{1,2,...,N}. We define the asynchronous MV y = A |7 x between the matrix
A € RYN*N and a vector x € RY as a function of 7 such that:

if 17T

T
€; Y = 9
if‘z‘ L]

e In other words, the operator |7 is equivalent to the regular MV Ax with the exception
that the 7th row of A is now replaced by an N-length zero row vector for any 7 ¢ T .

e Given 7', the random subset of 7 picks any T = |7 | integers of {1,2,..., N} with equal

N
probability, i.e., each one of the (T) possible row sets of A is picked with probability
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Probabilistic framework

o let k=1,2,....,m, m €N, and denote by 7; a random subset of |7;| € N integers
(without replacement) from 1 to N. The deterministic integer |7%| is an instance of the

integer-valued random variable 7" € {1,2..., N}. Then, for any N-length instances
r1,X9,...,Tm, of @ random vector x, we define the asynchronous randomized trace

estimator
Tr. T

r, (A |7 o) mZZ zi]; [A |7 2l
1

k=1i€T;

T Lk IS

m’m

nonzero if and only if 7 € T}..

The vectors x4, ..., x,,, are instances of a random vector sampled from a zero mean distribution and 1.1.d.
components with variance 1, i.e. E[xx’] = I.
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Probabilistic framework

e Consider now the diagonal random matrix formed by the summation of 1" canonical outer

Dy = Z eie?,

€T

products

where both the cardinality I' and the row subset 7 are random variables.

e When T'= N, as in the synchronous case, the matrix D+ is equal to the N x N identity
matrix. The asynchronous randomized trace estimator can be then written equivalently as

1 — 1 —
L= — ) ai Dy Azy = - kz_liﬁfQ(ﬁ:)ﬂ?ka

m -
m™m
k=1

e Here, Q('ﬁ;) — D’TkA and DTkA.CC — A‘Tk.’l?

ICIAM 2023




Probabilistic framework

o Let () denote a random matrix and x denote an independent random vector of the same
length as @ such that E[z] = 0 and E[zz"]| = I. Then,

2" Q] = Tr(E[Q]).

e |f the sample space of the random matrix () is formed by all possible matrices

Q(7T) = D7 A such that, for a given sample integer value of a uniform T" in the interval
1, N|, the random subset of T picks any 1" = |T| integers of {1,2,..., N} with equal
orobability, then T',,, is an unbiased estimator of Tr(E|Q)]).

e [he main question now becomes whether we can exploit I',,, to approximate the trace of
the implicit deterministic matrix A.

e Let up = E|T| denote the expectation of the random variable T'. Then,

QI =514, and  E[N,] = SETr(4),

. . . N . . .
i.e., the randomized estimator —1I,,, is an unbiased estimator of Tr(A).

U
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Algorithm

A

. Receive m, setI'=1 =0
. Dok=1,....m

e Sample x from the Rademacher distribution
e Update =T + x%DTkAa:k
o Set ' =T/k

. End
. ReturnI’,, =T

For each k, the random subset T picks any |7 | integers of {1,2,..., N} with equal
probability.

Each cardinality | 7| is an instance of aninteger 7" and takes values between 1 and V.
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Variance of asynchronous trace estimator

Theorem 1. Let rrfﬂ denote the variance of the random variable I', and define the scalars

K 3(Npr —op — up) I7e 2 ("TT + HT — BT ) . (*’T Tt NHUT — KT ) nd K K o HT
] — AT/ AT y A2 — AT/ AT ? A3 ANT{ AT ' allC 4= -.l_H'IT.

N(N —1) N(N — 1) N(N — 1) N
The variance of a single sample of the asynchronous randomized trace estimator Var(x1 Qx) is then
equal to

2

i

F

K1 Tr (diag(A)?) + KoTr (A%) + KsTr (A)°.
when x € N (0, 1), and equal to

K, Tr ((hf-_l.g (A )‘3) + K>Tr (-1‘3) + K3Tr (A )‘EP ,

F

when x is a Rademacher random vector.
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Variations of asynchronous trace estimator

Notice that when 1' = N, the randomized trace estimation becomes synchronous, and we have
0% = 0 and pr = N. Plugging these values in Theorem 1 gives us K1 = K3 = 0, Ky = 2,
K4 = —2,and Var(z! Qz) = 2||A||% when z € NV(0, I), and Var(z? Qz) = 2(||A]|% — Zi\;1 AZ)
when x 1s a Rademacher vector. These variances are identical to those of the randomized trace

estimator 1n the synchronous case [2]. In the general asynchronous case, I’ can be less than /V, and
one can distinguish three important cases for 7

1. 1'1s a fixed integer (deterministic) in the range 1 < 71" < N,

2. T takes on integer values in |1, V| with equal probability,

3. 7T is obtained by choosing each element in |1, N| with probability p. Note that for a fixed 7,
each subset 7 such that T" = |7 | occurs with the same probability.
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Stochastic rounding

We can consider the asynchronous setting as a case of approximate and inaccurate computing where only
a random approximation Q of the matrix 4 is used each time and requiring that the expectation of the
random variable is proportional to A (as expressed by E[Q] = (up/N)A).

Another important method of random approximation is stochastic rounding, where a real number is

approximated by neighboring quantization levels with probability proportional to the distance to the
opposite quantization level.

More precisely, if g3 < x < go lies between quantization levels g; and g-, the

stochastic rounding of x is defined as sr(x) = ¢; with probability 2=~ and sr(x) = ¢o otherwise'.

qd2 —(41

It is easy to see that E[sr(x)] = x and Var(sr(x)) = x(q1 + ¢2 — ) — q1g2. Let us denote
r(rz) =z — a and A(x) = g2 — ¢q in which case we can write Var(sr(z)) = r(x)(A(x) — r(x)),
and E[sr(x)?] = qor(x) + 7¢1.
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Stochastic rounded asynchronous randomized trace
estimator

Definition 3. Let T denote a random subset of T € N integers (without replacement) from the set
{1,2,..., N}. We define the stochastically rounded asynchronous matrix-vector product (SRAMVP)
y = A |7 x between A € RY*Y and a vector v € RN as a function of T such that:

e;y = {51 ([Az];) iteeT

0 ifi ¢ T.

In other words, the operator |1 is equivalent to the regular matrix-vector multiplication Ax with the
difference that the entries are replaced with a stochastic rounding representation and the ith row of
A is replaced by an N -length zero row vector unless 1 € . We assume that the stochastic rounding
is independent from the random subset T .
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Stochastic rounded asynchronous randomized trace
estimator

S

Let A be the random matrix where each entry A;; = sr(A4;;) independently.
Theorem 3. The variance of the stochastically rounded asynchronous randomized trace estimator
Var(z! Q) is equal to
- . N 2
K, Tr (E[diag(A)Q]) + K,Tr (E[AQ]) + KE {Tr (A) } |

when x € N(0, 1), and equal to

K,Tr (E[diag(ﬁ)z]) + KoTr (E[}iz]) + KK {Tf (A) 2} 7

when x is a Rademacher random vector, where K1, Ko, K3, and K4, are defined in Theorem 1.
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Stochastic rounded asynchronous randomized trace
estimator

As for the random vectors x, note that by symmetry the Rademacher vectors can be considered a
stochastic rounding of Gaussian vectors with two quantization levels when the stochastic rounding 1s
independent from the Gaussian random variable. More generally, we replace x with sr(x) and obtain

A~

| (. %Zsr(xk)TQ(ﬁ)sr(azk). (2)
k=1

Assuming the quantization levels are symmetric around 0, then for z symmetric around O (e.g.,
Gaussian) we have E {sr(x)sr(z)” | oc I and Eq. (2) after scaling is an unbiased estimator of Tr(A).
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Experimental results

= A sample of sparse matrices from the SuiteSparse Matrix Collection

0 Matrivname [N
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Experimental results
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Figure 1: A = e“. Left to right: fixed T = [Np|, uniform T, fixed p. We use p = 0.6.
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Experimental results
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Figure 2: Left to right: fixed T' = | Np|, uniform T, fixed p. We use p = 0.6.
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Experimental results
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Figure 3: A = G°. Left to right: fixed T = [Np), uniform T, fixed p. We use p = 0.6.




Experimental results
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[ Rademacher samples| Stochastic rounding. Matrix of size N = 1000 with entries
sampled from standard normal distribution scaled by 1000. Left to right: fixed 7', uniform 7', fixed p;
p = 0.6, T = [ Np]|. Top to bottom: Different numbers of quantization levels: 2, 4
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Figure 5: [Gaussian samples| Stochastic rounding. Matrix of size N = 1000 with entries sampled
from standard normal distribution scaled by 1000. Left to right: fixed ', unitorm 7', fixed p; p = 0.6,

T'= | Np]. Top to bottom: Different numbers of quantization levels: 2, 4

ICIAM 2023




25

ICIAM 2023



	Covers and front matter designs
	Slide 1: Trace estimation via asynchronous stochastic rounding     ICIAM 2023 Minisymposium on Stochastic Rounding for Reduced-Precision Arithmetic in Scientific Computing         
	Slide 2: Introduction
	Slide 3: Inaccurate or approximate computing
	Slide 4: Matrix trace estimation and graph analytics
	Slide 5: Generalized Adversarial Networks
	Slide 6: Hutchinson’s trace estimator
	Slide 7: Asynchronous randomized trace estimates
	Slide 8: Probabilistic framework
	Slide 9: Probabilistic framework
	Slide 10: Probabilistic framework
	Slide 11: Probabilistic framework
	Slide 12: Algorithm
	Slide 13: Variance of asynchronous trace estimator
	Slide 14: Variations of asynchronous trace estimator
	Slide 15: Stochastic rounding
	Slide 16: Stochastic rounded asynchronous randomized trace estimator
	Slide 17: Stochastic rounded asynchronous randomized trace estimator
	Slide 18: Stochastic rounded asynchronous randomized trace estimator
	Slide 19: Experimental results
	Slide 20: Experimental results
	Slide 21: Experimental results
	Slide 22: Experimental results
	Slide 23: Experimental results
	Slide 24: Experimental results
	Slide 25


