Trace estimation via asynchronous stochastic rounding

ICIAM 2023 Minisymposium on Stochastic Rounding for Reduced-Precision Arithmetic in Scientific Computing

Vasileios Kalantzis

Shashanka Ubaru

Georgios Kollias

Lior Horesh

Chai Wah Wu

Introduction

- We consider the problem of computing the trace of an implicitly-defined n by n matrix A = f(G).
- This problem is important in many applications, where the function f can be matrix exponential, matrix log, fractional powers or entropy.
- Computational difficulties arise when the order n is large and/or all the information of G is not available in the computer's main memory.
- We consider approaches to estimate the trace of a large matrix A using a restricted amount of information from A.

y-defined n by n matrix A = f(G). tion f can be matrix exponential,

Inaccurate or approximate computing

- Due to resource (time, power, size, etc.) limitation, it might not be possible to compute the full trace of A.
- In this case, we are limited to a restricted access to information about A in order to estimate trace(A).
- We consider two such restrictions which can be considered in the same framework.
 - 1. Asynchronous randomized trace estimates
 - 2. Trace estimation via stochastic rounding

Matrix trace estimation and graph analytics

- Matrix trace estimation is ubiquitous in graph analytics.
- In chemical graph theory, the Estrada index is a topological index of protein folding. The index was first defined by Ernesto Estrada as a measure of the degree of folding of a protein, which is represented as a path-graph weighted by the dihedral or torsional angles of the protein backbone. This index of degree of folding has found multiple applications in the study of protein functions and protein-ligand interactions. The Estrada index is equal to

 $trace(e^A).$

• Computing the transitivity ratio of a (sub-)graph leads to e-commerce opportunities, e.g., high ratio implies similarity between nodes, thus creating marketing opportunities in of e-commerce platforms (for example, suggest to user i what you suggested to users j and kif they form a triangle). The number of triangles can be determined by computing

$$\operatorname{trace}(A^3)/6.$$

Generalized Adversarial Networks

- The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN).
- Unlike the earlier inception score (IS), which evaluates only the distribution of generated images, the FID compares the distribution of generated images with the distribution of a set of real images ("ground truth").
- For multivariate variables this is equivalent to computing

$$\texttt{FID} = \|\mu_X - \mu_Y\| + \texttt{trace}(\Sigma_X + \Sigma_Y)$$

• We need to compute the trace of covariance matrices.

$$-2\sqrt{\Sigma_X \Sigma_Y}).$$

Hutchinson's trace estimator

- The standard approach to compute the trace of an implicitly-defined matrix A is to apply Monte Carlo trace estimation.
- Let x be a random vector with zero mean and unit variance.

$$\mathbb{E}[x^T A x] = \sum_{i=1}^n \sum_{j=1}^n A_{ij} \mathbb{E}[x_i x_j] = \sum_{i=1}^n \left[A_{ii} \mathbb{E}[x_i x_i] + \sum_{j \neq i}^n A_{ij} \mathbb{E}[x_i x_j] \right] = \sum_{i=1}^n A_{ii} = \texttt{trace}(A).$$

Thus, the following trace estimator, known as Hutchinson's trace estimator, is an unbiased estimator of trace(A):

Hutchinson's trace estimator : $\frac{1}{m} \sum_{n=1}^{m}$

where x_k is an *n*-length Rademacher vector (i.e., each entry is equal to ± 1 with equal probability).

• The convergence of Hutchinson's trace estimator is governed by $O(1/\sqrt{m})$.

$$\sum_{k=1}^{T} x_k^T A x_k,$$

Asynchronous randomized trace estimates

- Asynchronous computations arise naturally in distributed-memory implementations for the iterative computation of fixed points so as to reduce idle time between different processing elements via reducing synchronization points.
- While asynchronous iterations generally lead to slower convergence, the everincreasing gap between the time required to share a floating-point number between different processing elements and the time needed to perform a single floating-point operation by one of the processing elements, has led to a revived interest in the analysis and application of asynchronous algorithms in numerical linear algebra.

• Let \mathcal{T} denote a random subset of $T \in \mathbb{N}$ integers (without replacement) from the set $\{1, 2, \ldots, N\}$. We define the asynchronous MV $y = A \mid_{\mathcal{T}} x$ between the matrix $A \in \mathbb{R}^{N \times N}$ and a vector $x \in \mathbb{R}^N$ as a function of \mathcal{T} such that:

$$e_i^T y = \begin{cases} [Ax]_i & \text{if } i \in \mathcal{T} \\ 0 & \text{if } i \notin \mathcal{T}. \end{cases}$$

- In other words, the operator $|_{\mathcal{T}}$ is equivalent to the regular MV Ax with the exception that the *i*th row of A is now replaced by an N-length zero row vector for any $i \notin \mathcal{T}$.
- Given T, the random subset of \mathcal{T} picks any $T \equiv |\mathcal{T}|$ integers of $\{1, 2, \dots, N\}$ with equal probability, i.e., each one of the $\binom{N}{T}$ possible row sets of A is picked with probability $\binom{N}{T}^{-1}$.

• Let $k = 1, 2, \ldots, m, m \in \mathbb{N}$, and denote by \mathcal{T}_k a random subset of $|\mathcal{T}_k| \in \mathbb{N}$ integers (without replacement) from 1 to N. The deterministic integer $|\mathcal{T}_k|$ is an instance of the integer-valued random variable $T \in \{1, 2, ..., N\}$. Then, for any N-length instances x_1, x_2, \ldots, x_m , of a random vector x, we define the asynchronous randomized trace estimator

$$\Gamma_m = \frac{1}{m} \sum_{k=1}^m x_k^T (A \mid_{\mathcal{T}_k} x_k) = \frac{1}{m} \sum_{k=1}^m \sum_{i \in \mathcal{T}_k} [x_k]_i^T [A \mid_{\mathcal{T}_k} x_k]_i.$$

• The second equality of Γ_m follows by recalling that the *i*th entry of the product $A|_{\mathcal{T}_k} x_k$ is nonzero if and only if $i \in \mathcal{T}_k$.

The vectors x_1, \ldots, x_m are instances of a random vector sampled from a zero mean distribution and i.i.d. components with variance 1, i.e. $E[xx^T] = I$.

• Consider now the diagonal random matrix formed by the summation of T canonical outer products

$$D_{\mathcal{T}} = \sum_{i \in \mathcal{T}} e_i e_i^T,$$

where both the cardinality T and the row subset \mathcal{T} are random variables.

• When $T \equiv N$, as in the synchronous case, the matrix $D_{\mathcal{T}}$ is equal to the $N \times N$ identity matrix. The asynchronous randomized trace estimator can be then written equivalently as

$$\Gamma_m = \frac{1}{m} \sum_{k=1}^m x_k^T D_{\mathcal{T}_k} A x_k = \frac{1}{m} \sum_{k=1}^m$$

• Here, $Q(\mathcal{T}_k) = D_{\mathcal{T}_k}A$ and $D_{\mathcal{T}_k}Ax = A|_{\mathcal{T}_k}x$.

 $x_k^T Q(\mathcal{T}_k) x_k,$

• Let Q denote a random matrix and x denote an independent random vector of the same length as Q such that $\mathbb{E}[x] = 0$ and $\mathbb{E}[xx^T] = I$. Then,

$$\mathbb{E}[x^T Q x] = \mathrm{Tr}(\mathbb{E}[Q]).$$

- If the sample space of the random matrix Q is formed by all possible matrices $Q(\mathcal{T}) = D_{\mathcal{T}}A$ such that, for a given sample integer value of a uniform T in the interval [1, N], the random subset of \mathcal{T} picks any $T \equiv |\mathcal{T}|$ integers of $\{1, 2, \ldots, N\}$ with equal probability, then Γ_m is an unbiased estimator of $\text{Tr}(\mathbb{E}[Q])$.
- The main question now becomes whether we can exploit Γ_m to approximate the trace of the implicit deterministic matrix A.
- Let $\mu_T = \mathbb{E}[T]$ denote the expectation of the random variable T. Then,

$$\mathbb{E}[Q] = \frac{\mu_T}{N}A, \quad \text{and} \quad \mathbb{E}[\Gamma_m] = \frac{\mu_T}{N}\operatorname{Tr}(A),$$

i.e., the randomized estimator $\frac{N}{\mu_T}\Gamma_m$ is an unbiased estimator of $\operatorname{Tr}(A)$.

Algorithm

- **0.** Receive m, set $\Gamma = \widehat{\Gamma} = 0$
- **1.** Do k = 1, ..., m
 - Sample x from the Rademacher distribution
 - Update $\widehat{\Gamma} = \widehat{\Gamma} + x_k^T D_{\mathcal{T}_k} A x_k$
 - Set $\Gamma = \widehat{\Gamma}/k$
- **2.** End
- **3.** Return $\Gamma_m = \Gamma$
- For each k, the random subset \mathcal{T}_k picks any $|\mathcal{T}_k|$ integers of $\{1, 2, \ldots, N\}$ with equal probability.
- Each cardinality $|\mathcal{T}_k|$ is an instance of an integer T and takes values between 1 and N.

Variance of asynchronous trace estimator

Theorem 1. Let σ_T^2 denote the variance of the random variable T, and define the scalars

$$K_1 = \frac{3(N\mu_T - \sigma_T^2 - \mu_T^2)}{N(N-1)}, \ K_2 = \frac{2\left(\sigma_T^2 + \mu_T^2 - \mu_T\right)}{N(N-1)}, \ K_3 = \frac{\left(\sigma_T^2 - \mu_T^2\right)}{N(N-1)}$$

The variance of a single sample of the asynchronous randomized trace estimator $Var(x^TQx)$ is then equal to

$$K_1 \operatorname{Tr} \left(\operatorname{diag}(A)^2 \right) + K_2 \operatorname{Tr} \left(A^2 \right) + K_3$$

when $x \in \mathcal{N}(0, I)$, and equal to

$$K_4 \operatorname{Tr} \left(\operatorname{diag}(A)^2 \right) + K_2 \operatorname{Tr} \left(A^2 \right) + K_3 \operatorname{Tr} \left(A \right)^2,$$

when x is a Rademacher random vector.

$\frac{1}{N} \frac{1}{N} \frac{\mu_T^2 - \mu_T}{N(N-1)}$ and $K_4 = K_1 - 2\frac{\mu_T}{N}$.

$$\operatorname{\mathtt{\Gammar}}\left(A
ight)^{2},$$

Variations of asynchronous trace estimator

Notice that when $T \equiv N$, the randomized trace estimation becomes synchronous, and we have $\sigma_T^2 = 0$ and $\mu_T = N$. Plugging these values in Theorem 1 gives us $K_1 = K_3 = 0, K_2 = 2,$ $K_4 = -2$, and $\operatorname{Var}(x^T Q x) = 2 \|A\|_F^2$ when $x \in \mathcal{N}(0, I)$, and $\operatorname{Var}(x^T Q x) = 2(\|A\|_F^2 - \sum_{i=1}^N A_{ii}^2)$ when x is a Rademacher vector. These variances are identical to those of the randomized trace estimator in the synchronous case [2]. In the general asynchronous case, T can be less than N, and one can distinguish three important cases for T:

- 1. T is a fixed integer (deterministic) in the range $1 \le T \le$
- 2. T takes on integer values in [1, N] with equal probability,
- 3. \mathcal{T} is obtained by choosing each element in [1, N] with probability p. Note that for a fixed T, each subset \mathcal{T} such that $T \equiv |\mathcal{T}|$ occurs with the same probability.

$$N$$
,

Stochastic rounding

We can consider the asynchronous setting as a case of approximate and inaccurate computing where only a random approximation Q of the matrix A is used each time and requiring that the expectation of the random variable is proportional to A (as expressed by $E[Q] = (\mu_T/N)A$).

Another important method of random approximation is stochastic rounding, where a real number is approximated by neighboring quantization levels with probability proportional to the distance to the opposite quantization level.

More precisely, if $q_1 \leq x \leq q_2$ lies between quantization levels q_1 and q_2 , the stochastic rounding of x is defined as $sr(x) = q_1$ with probability $\frac{q_2 - x}{q_2 - q_1}$ and $sr(x) = q_2$ otherwise¹. It is easy to see that $\mathbb{E}[\operatorname{sr}(x)] = x$ and $\operatorname{Var}(\operatorname{sr}(x)) = x(q_1 + q_2 - x) - q_1q_2$. Let us denote $r(x) = x - q_1$ and $\Delta(x) = q_2 - q_1$ in which case we can write $Var(sr(x)) = r(x)(\Delta(x) - r(x))$, and $\mathbb{E}[sr(x)^2] = q_2r(x) + xq_1$.

Stochastic rounded asynchronous randomized trace estimator

Definition 3. Let \mathcal{T} denote a random subset of $T \in \mathbb{N}$ integers (without replacement) from the set $\{1, 2, \ldots, N\}$. We define the stochastically rounded asynchronous matrix-vector product (SRAMVP) $y = A \mid_{\mathcal{T}} x$ between $A \in \mathbb{R}^{N \times N}$ and a vector $x \in \mathbb{R}^{N}$ as a function of \mathcal{T} such that:

$$e_i^T y = \begin{cases} \operatorname{sr}([Ax]_i) & \text{if } i \in \mathcal{T} \\ 0 & \text{if } i \notin \mathcal{T} \end{cases}$$

In other words, the operator $|_{\mathcal{T}}$ is equivalent to the regular matrix-vector multiplication Ax with the difference that the entries are replaced with a stochastic rounding representation and the ith row of A is replaced by an N-length zero row vector unless $i \in \mathcal{T}$. We assume that the stochastic rounding is independent from the random subset \mathcal{T} .

Stochastic rounded asynchronous randomized trace estimator

Let \tilde{A} be the random matrix where each entry $\tilde{A}_{ij} = \operatorname{sr}(A_{ij})$ independently. **Theorem 3.** The variance of the stochastically rounded asynchronous randomized trace estimator $\operatorname{Var}(x^T Q x)$ is equal to

$$K_1 \operatorname{Tr} \left(\mathbb{E}[\operatorname{diag}(\tilde{A})^2] \right) + K_2 \operatorname{Tr} \left(\mathbb{E}[\tilde{A}^2] \right) + K_3 \mathbb{E} \left[\operatorname{Tr} \left(\tilde{A} \right)^2 \right],$$

when $x \in \mathcal{N}(0, I)$, and equal to

$$K_4 \operatorname{Tr}\left(\mathbb{E}[\operatorname{diag}(\tilde{A})^2]\right) + K_2 \operatorname{Tr}\left(\mathbb{E}[\tilde{A}^2]\right) + K_3 \mathbb{E}\left[\operatorname{Tr}\left(\tilde{A}\right)^2\right],$$

when x is a Rademacher random vector, where K_1, K_2, K_3 , and K_4 , are defined in Theorem 1.

Stochastic rounded asynchronous randomized trace estimator

As for the random vectors x, note that by symmetry the Rademacher vectors can be considered a stochastic rounding of Gaussian vectors with two quantization levels when the stochastic rounding is independent from the Gaussian random variable. More generally, we replace x with sr(x) and obtain

$$\tilde{\Gamma}_m = \frac{1}{m} \sum_{k=1}^m \operatorname{sr}(x_k)^T Q(\mathcal{T}_k) \operatorname{sr}(x_k)$$

Assuming the quantization levels are symmetric around 0, then for x symmetric around 0 (e.g., Gaussian) we have $\mathbb{E}\left[\operatorname{sr}(x)\operatorname{sr}(x)^T\right] \propto I$ and Eq. (2) after scaling is an unbiased estimator of $\operatorname{Tr}(A)$.

(k). (2)

• A sample of sparse matrices from the SuiteSparse Matrix Collection

Id	Matrix name	N	$\mathtt{nnz}(A)$	$\operatorname{Tr}(A)$
1	Pajek/yeast	2361	13828	536
2	SNAP/ca-HepTh	9877	51971	25
3	Botonakis/thermomech_TC	102158	711558	585.871
4	SNAP/web-Stanford	281903	2312497	0
5	LAW/cnr-2000	325557	3216152	87442

Figure 1: $A = e^G$. Left to right: fixed $T = \lceil Np \rceil$, uniform T, fixed p. We use p = 0.6.

Figure 2: Left to right: fixed $T = \lceil Np \rceil$, uniform T, fixed p. We use p = 0.6.

Figure 3: $A = G^3$. Left to right: fixed $T = \lceil Np \rceil$, uniform T, fixed p. We use p = 0.6.

[Rademacher samples] Stochastic rounding. Matrix of size N = 1000 with entries Figure 4: sampled from standard normal distribution scaled by 1000. Left to right: fixed T, uniform T, fixed p; $p = 0.6, T = \lceil Np \rceil$. Top to bottom: Different numbers of quantization levels: 2, 4

Figure 5: [Gaussian samples] Stochastic rounding. Matrix of size N = 1000 with entries sampled from standard normal distribution scaled by 1000. Left to right: fixed T, uniform T, fixed p; p = 0.6, $T = \lceil Np \rceil$. Top to bottom: Different numbers of quantization levels: 2, 4

25